Synaps

Developing novel photodynamic therapies for neurosurgery

Synaps
  • About
    • Overview
    • Partnership >
      • Onco-THAI Inserm U1189
      • University of Lille
      • Lille University Hospital
      • Inserm
      • ECRIN
      • Leitat Technological Center
      • IDDI
      • Medical University of Graz
      • OP2
      • Erasme Hospital
  • Research
    • Overview
    • Clinical trial
    • Publications
  • Medical information
    • Overview
    • Glioblastoma
    • PhotoDynamic Therapies
  • News
  • Contact

  • About
    • Overview
    • Partnership >
      • Onco-THAI Inserm U1189
      • University of Lille
      • Lille University Hospital
      • Inserm
      • ECRIN
      • Leitat Technological Center
      • IDDI
      • Medical University of Graz
      • OP2
      • Erasme Hospital
  • Research
    • Overview
    • Clinical trial
    • Publications
  • Medical information
    • Overview
    • Glioblastoma
    • PhotoDynamic Therapies
  • News
  • Contact

publications

Stacking denoising auto-encoders in a deep network to segment the brainstem on MRI in brain cancer patients: A clinical study

11/25/2016

 
Dolz J, Betrouni N, Quidet M, Kharroubi D, Leroy HA, Reyns N, Massoptier L, Vermandel M.
Stacking denoising auto-encoders in a deep network to segment the brainstem on MRI in brain cancer patients: A clinical study
Computerized Medical Imaging and Graphics, 2016, Vol. 52, p. 8-18.

ABSTRACT

Delineation of organs at risk (OARs) is a crucial step in surgical and treatment planning in brain cancer, where precise OARs volume delineation is required. However, this task is still often manually performed, which is time-consuming and prone to observer variability. To tackle these issues a deep learning approach based on stacking denoising auto-encoders has been proposed to segment the brainstem on magnetic resonance images in brain cancer context. Additionally to classical features used in machine learning to segment brain structures, two new features are suggested. Four experts particwww.sciencedirect.com/science/article/pii/S0895611116300295ipated in this study by segmenting the brainstem on 9 patients who underwent radiosurgery. Analysis of variance on shape and volume similarity metrics indicated that there were significant differences (p < 0.05) between the groups of manual annotations and automatic segmentations. Experimental evaluation also showed an overlapping higher than 90% with respect to the ground truth. These results are comparable, and often higher, to those of the state of the art segmentation methods but with a considerably reduction of the segmentation time.

DOI: 10.1016/j.compmedimag.2016.03.003

ScienceDirect Link | HAL Link | Pubmed Link

Comments are closed.
Université Lille 2
Onco Thai
Inserm
CHRU Lille
Picture
 Legal notice - Credits