Synaps

Developing novel photodynamic therapies for neurosurgery

Synaps
  • About
    • Overview
    • Partnership >
      • Onco-THAI Inserm U1189
      • University of Lille
      • Lille University Hospital
      • Inserm
      • ECRIN
      • Leitat Technological Center
      • IDDI
      • Medical University of Graz
      • OP2
      • Erasme Hospital
  • Research
    • Overview
    • Clinical trial
    • Publications
  • Medical information
    • Overview
    • Glioblastoma
    • PhotoDynamic Therapies
  • News
  • Contact

  • About
    • Overview
    • Partnership >
      • Onco-THAI Inserm U1189
      • University of Lille
      • Lille University Hospital
      • Inserm
      • ECRIN
      • Leitat Technological Center
      • IDDI
      • Medical University of Graz
      • OP2
      • Erasme Hospital
  • Research
    • Overview
    • Clinical trial
    • Publications
  • Medical information
    • Overview
    • Glioblastoma
    • PhotoDynamic Therapies
  • News
  • Contact

publications

Photodynamic therapy in neurosurgery: a proof of concept of treatment planning system

2/16/2017

 
Dupont C, Reyns N, Mordon S, Vermandel M
Photodynamic therapy in neurosurgery: a proof of concept of treatment planning system
Proc. SPIE 10047, 2017.

ABSTRACT:

Glioblastoma (GBM) is the most common primary brain tumor. PhotoDynamic Therapy (PDT) appears as an interesting research field to improve GBM treatment. Nevertheless, PDT cannot fit into the current therapeutic modalities according to several reasons: the lack of reliable and reproducible therapy schemes (devices, light delivery system), the lack of consensus on a photosensitizer and the absence of randomized and controlled multicenter clinical trial.
The main objective of this study is to bring a common support for PDT planning. Here, we describe a proof of concept of Treatment Planning System (TPS) dedicated to interstitial PDT for GBM treatment. The TPS was developed with the integrated development environment C++ Builder XE8 and the environment ArtiMED, developed in our laboratory. This software enables stereotactic registration of DICOM images, light sources insertion and an accelerated CUDA GPU dosimetry modeling. Although, Monte-Carlo is more robust to describe light diffusion in biological tissue, analytical model accelerated by GPU remains relevant for dose preview or fast reverse planning processes.
Finally, this preliminary work proposes a new tool to plan interstitial or intraoperative PDT treatment and might be included in the design of future clinical trials in order to deliver PDT straightforwardly and homogenously in investigator centers.

DOI: 10.1117/12.2252622

SPIE Link

Comments are closed.
Université Lille 2
Onco Thai
Inserm
CHRU Lille
Picture
 Legal notice - Credits